PHYSICAL REVIEW E 68, 026126 (2003
Vortex dynamics in evolutive flows: A weakly chaotic phenomenon
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We make use of a wavelet method to extract, from experimental velocity signals obtained in an evolutive
flow, the dominating velocity components generated by vortex dynamics. We characterize the resulting time
series complexity by means of a joint use of data compression and of an entropy diffusion method. We assess
that the time series emerging from the wavelet analysis of the vortex dynamics is a weakly chaotic process with
a vanishing Kolmogorov-Sinai entropy and a power-law growth of the information content. To reproduce the
Fourier spectrum of the experimental signal, we adopt a harmonic dependence on time with a fluctuating
frequency, ruled by an inverse power-law distribution of random events. The complexity of these fluctuations
is determined by studying the corresponding artificial sequences. We reproduce satisfactorily both spectral and
complex properties of the experimental signal by locating the complexity of the fluctuating process at the
border between the stationary and the nonstationary states.
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[. INTRODUCTION map in the regiore=2 and the logistic map at the Feigen-
baum point, the information grows in a different way. In the
In the past few years an increasing interest has beecase of the Manneville map, described by, =X,
shown in studying physical processes with intermediate+x’(mod 1), withxe[0,1], the information content grows
properties between chaotic and regular dynamics. Botlas a power lawn® [where the exponent is 1/(z—1)], as
theory and experimental measurements have been affordinghown in Refs[8,11,19, while in the case of the logistic
evidence for the existence of physical systems departinghap at the chaos threshold, it grows as the logarithm of
from the chaotic condition established by a positive(see Sec. IV and Ref§13,10,14).
Kolmogorov-Sinai(KS) entropy[1]. These systems, filling  The aim of this paper is to study a fluid dynamical process
the gap between randomness and order, are characterized Ryhe outer shear layer of a coaxial jet flow: to be precise, to
vanishing KS entropy, and consequently, by a zero Lyapunoyy,qy theroll-up and pairing of vortices from an entropic
coefficient, but also by nonregular features. Indeed, a vanis Soint of view. We analyze experimental data from the jet

ing KS entropy does not necessarily imply a condition of ; : -
or?jer Hereaf?gr we shall refer to th)(/ase F;3)/lstems as WeakfIOW to characterize the degree of complexity of the fluid
cha ofi c ’ é(ynamical process. We shall apply a wavelet-Hilbert analysis
Nevértheless we have to point out that this is still a someLlS| on the experimental velocity signals, in order to extract
what vague definition which applies to different physical and characterize only the fluctuations related to the two fluid

conditions ranging from low-dimensional maps, with regulardynamical processegoll-up and pairing. The subsequent
and random regions coexisting in the same phase $pagle ana_lys!s of the reconstructed signals shows unamblgl_Joust a
to systems yielding self-organizati§a,5], which is a prop-  vanishing KS entropy. Furthermore, we prove that this con-
erty incompatible with the condition of total randomness. Fordition of vanishing KS entropy is accompanied by a power-
instance, in the case of low-dimensional systems, the condlaw growth of the computable information content.
tion of vanishing KS entropy applies to the classes of both Moreover, we propose a model displaying the same kind
anomalous kinetics along filamented surfaf@sand of in-  of complexity of the experimental data by means of a sto-
termittent Manneville-like mapf7,8]. chastic intermittent process ruled by an inverse power-law
Therefore, since the class of physical systems with vandistribution of random event¥ (t)~t~#. This is the same
ishing KS entropy is huge, we need an even finer indicator tevaiting time distribution as that appearing in the Manneville
discriminate between different kinds of zero KS entropy dy-map[8,16] and in the class of random walks introduced in
namics. We choose the computable information contenRef. [17], which was proved to generate enhanced anoma-
(CIC) (also known as the computable quantity related to thdous diffusion. This form of anomalous diffusion, when 2
Kolmogorov complexity as the indicator of the degree of <u<3, was called Ley walk [18,19 and used later as the
complexity for weakly chaotic dynamical systerf,10]. prototype of the dynamical approach tovyediffusion (see,
CIC measures the information that is necessary to desaribefor instance, Ref420,21]). This type of dynamical processes
steps of a typical orbit. Indeed, if we consider two dynamicalled the authors of Ref22] to coin the termstrange kinetics
systems with vanishing KS entropy, such as the Mannevilldo point out the anomalous nature of the diffusion
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INITIAL MERGING INTERMEDIATE FULLY MERGED namics of vortical structures produced by the instability of
Z‘O NE I ZORE | HONE the shear layers. Therefore, signal analysis procedures based
y : inner potential I only on conventional Fourier methods become largely inap-
|

core propriate and different techniques, providing the time varia-
' tion of the frequency and amplitude of the components
reattachment | . . .
point | present in the signals, should be used. A classical demodula-
~_ | tion technique, on which the analysis procedures used in the
------- = present investigation are founded, shall now be briefly de-
scribed. Any time-varying real signal(t) may be repre-
sented in the form

-~
.-

x(t)=A(t)cog o()].

This representation is not unique, but a so-called canonical
pair may be defined for the quantitie&, () if we introduce
the associated complex analytic siga(t) defined by

outer potential
core

| inner mixing
| region

outer mixing

region jet-boundary

FIG. 1. lllustration of the coaxial jet.

Z,(t)=A)e' I =x(t) +ixu(t),

process emerging from the waiting time distribution with di-
vergent second moment. wherexy(t) is the Hilbert transform ok(t), given by

To achieve our goal, we use three distinct techniques. The
first one is the aforementioned wavelet-Hilbert analy$k. 1 +2 X(7)
The second one is the diffusion entrofiyE) method[ 23,24 xu() =H[x(1)]=— Pf_w —ar
and, finally, the third one is the CIC method of Rdf8,10].
This is the second example of a joint application of the DET
and CIC methods. The first is given by the work of He#],
where the reader can find a detailed discussion about the _
benefit stemming from the joint use of these two methods. X(=Adt)cod V)],

As for the experimental apparatus used to acquire the dajgy ey yielding the following definition of instantaneous fre-
to study the velocity signals are obtained in a coaxial jet ﬂowCluency ofx(t):
(see the scheme in Fig),1described in more detail by Bur-
esti et al. [25]. The analyzed configuration has an inner to 1 deyt)
outer jet diameter ratid,/D;=2.0 (with D;=50 mm), a pe(t) = 2 ——
velocity ratioU,/U;= 1.5 (with U,=6 m/s), and wall thick- 2m dt
nessL=5 mm. The axial and radial velocity componenis,
andv, were measured by meansXhot wires placed inside
the inner and the outer shear layers, at several axial positio
downstream the jet outlet. The measurements at each poi

ﬁg;i::é;?grozué ? least three times at a 5000 Hz samplin uency,x(t) =A(t)cog w(t)t+¢g]. In this case, provided the

The outline of the paper is as follows. To make it asmodulation frequencies are sufficiently lower than the funda-

self-contained as possible, in Secs. II-1V, we make a shm’?1ental frequency of the 5‘9”"’.‘" the time variation of ampli—
review of the wavelet-Hilbert analysis, of the DE and of thetUde and frequency may be directly recovered from the time

CIC methods, respectively. In Sec. V, we illustrate the resultyaration of the modulus and of the phase derivative of the

of these techniques applied to the vortex dynamics unde?ssouated analytic signal.

study in this paper. Finally, in Sec. VI, we discuss the results However, this procedure is applicable only if the signal is
that were obtained ' ' composed of a single asymptotic component; conversely, if

multiple components are present, other techniques must be
devised. One of thed@6] is based on the application of the
continuous wavelet transform and exploits the strict analogy
existing between the wavelet transform of a signal and the
The experimental velocity signals acquired in many flowextraction of its associated analytic signal when the used
fields are characterized by fluctuations induced by the paswavelet is a complex analytic functidie., whose Fourier
sage or by the oscillation of vortical structures. For instancetransform is zero for negative frequengidsdeed, the single
in the developing shear layers of a coaxial jet, the velocitynodulated components present in the signal may be ex-
signals are of increasing complexity with increasing distancéracted(provided they are asymptotic and sufficiently sepa-
from the jet outlet, and multiple dominating frequencies mayrated in frequencyfrom the restrictions of the wavelet trans-
be present, corresponding to fluctuations with different deform to the curves where the wavelet modulus is maximum,
grees of modulation both in amplitude and in frequencywhich are called theidgesof the transform. More explicitly,
These fluctuations are connected with the passage and dif-the signal is of the form

he canonical representation xft) is then

@

This definition, which is perfectly correct from a mathemati-

r?é" point of view, acquires also a significant physical mean-
g when the analyzed signal is asymptotic, i.e., a sinusoidal

ggnal which is slowly modulated in amplitude and fre-

Il. THE WAVELET-HILBERT ANALYSIS
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N N afterwardgq27] that the DE method is an efficient method of

X(t)= E Xp(t)= E An(t)cog ¢, (1)] establishing the scaling value if the scaling condition applies,

n=1 n=1 regardless of the scaling origin, and even when the scaling

N condition, according to the generalized central limit theorem

= A,(t)cos w,(t)t+ ool (C_SCLT) (28], yields.a divergent variance. Givgn a discrete
n=1 signal{x;};—1n, We interpret it as a set of diffusion generat-

_ » ing fluctuations. The collection of these fluctuations yield a
and a Morlet wavelet)(t)=€'“o'e” "2 is used, then the re- single diffusion trajectory. We can create a set of many dif-
strictions of the wavelet transform to tié ridge curvesa  ferent diffusion trajectories by means of moving windows of
=a;n(t) (where the wavelet scala is proportional to the sizet with 1<t<N. We generatd—t+ 1 trajectories con-

inverse of the frequengymay be expressed as sidering the sum
W, (@ (t),t)=Corr(t)Z,,+r(t), i=j+t
where the ternCorr(t) is completely defined by the used yi(h= .2:, Xi- @

wavelet and by the ridge values, and the residua) is

negligible if the component is asymptotic. It is then possibleg, -y giffusive trajectory can be thought of as the final posi-
to approximately obtain the analytic signals associated W|tqion of a walker which jumped fartime steps. Lep(y,t) be

the single components and to estimate the relevant frequengyq, probability to be at positioy after t time steps. If the

anq a}mpr:itufde modulatioré I?W.S' |-||OWGVﬁr, someblin:jitations caling condition applies to the asymptotic time linpify,t)
exist in the requency modu ation laws that may be etecte expected to fulfill the fO”OWing condition:

using this procedurg26]. In particular, we note that the sig-
nals that do not fit satisfactorily, the asymptotic condition 1
make the wavelet ridge analysis much less accurate than the py,t)= TF(Z@)_ 3
usual Hilbert demodulation technique, see R#&g]. Conse- t t

guently, a new procedure was devised, which in a sense ex-

ploits the qualities of both techniques and which shall nowSome of the processes of anomalous diffusion fit the predic-
be briefly described. The signal is first transformed using aion of the GCLT, thereby assigning to the functibfy) the
Morlet wavelet and the ridges are approximately derivedstructure of a Ley distribution with a diverging second mo-
from the modulus maxima curves; in this procedure, a highment. This is a problem for the techniques of analysis based
value of the central frequency of the wavelg$ is used, in  on the observation of the second moment. It is not a problem
order to assure a high frequency resolution and the reductiofor the DE, which evaluates the scaling parametéom the

of the interference effects between adjacent components. Tt&hannon entropy of the probabilip(y,t):

wavelet maps are then filtered, neglecting the coefficients

outside a band around the dominating ridge, and an inverse +oo

transform is applied. The extracted signal may then be sub- S(t)= —J p(y,t)In[p(y,t)]dz. (4)
tracted from the original one and the procedure may be re- o

peated until all the detectable components are extracted. The o ) )
Hilbert transform technique is then applied to each compolndeed, it is straightforward to prove that when the scaling
nent, in order to obtain the required modulation laws. In thecondition of Eq.(3) holds, Eq.(4) yields S(t)=A+ 5Int,
latter step, further filtering may be used, considering only thevhereA is the Shannon entropy of the generating functon
time intervals in which the modulus of the associated anaJhus, the scaling parametélis easily evaluated by plotting
|yt|C Signa| is h|gher than a given threshcﬂ'ﬂh terms of a the Shannon entropy ina diagram with linear ordinate and a
given percent of its mean valueThis avoids spurious large logarithmic abscissa. The Shannon entropy, as a function of
fluctuations of the instantaneous frequency and the final stdime, becomes a straight line whose slope is the scaling pa-
tistical analysis may be restricted to those intervals of time if@meters. _ _ .
which this frequency is physically meaningful, in the sense Itis important to point out that in the case where the time
that it may be confidently associated with fluctuations pro-Series under study is a periodic process, the diffusion en-
duced by a fluid dynamical mechanism, such as the passadf@pPy; starting from a small initial value, reaches a maximum,
or oscillation of vorticity structures. Obviously, in order to then it regresses to the initial value, at a time corresponding
characterize their level of chaoticity, the single componentd® the period of the process under stu@|. Then, moving
obtained through the wavelet filtering procedure may also b&om this value, the diffusion entropy increases again up to a
analyzed with different techniques, as, for instance, thos&aximum which has the same value as the earlier maximum,

described in the following sections. and so on. In the case of the logistic map at the chaos thresh-
old, the diffusion entropy exhibits a behavior very similar to
Ill. DIFEUSION ENTROPY METHOD that of a periodic process. The maxima still lie on a horizon-

tal line, but the regressions to the minima are not complete as
This technique of analysis of time series was introducedn the periodic case and occur in a disordered \&4].
originally in the paper of Ref.23], whose authors coined, in In the case of periodic processes, the initial entropy in-
fact, the term diffusion entropy. It became clear immediatelycrease is due to the fact that the moving window technique,
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adopted to create a large number of different diffusion trasp=(R,,...,R)) of the dynamical system. In a standard way,
jectories, is equivalent to setting uncertainty on the initialwe associate a stringyp(X) to the trajectoryx. We set
condition. dp(X)=(Sg,S1,---,Sk,---) if andonly if

IV. COMPUTABLE INFORMATION CONTENT METHOD V k=0 xRy, wherescef{l,..]}.

The second method of analysis used in this paper aims at
establishing a direct contact with algorithmic information ~We can define thénformation content (x,P,n) of the
content(also known as Kolmogorov complexjtyln this sec-  trajectoryx with respect to the partitio® in the following
ond method, the basic notion is the notionioformation  way:
Given a finite strings (namely, a finite sequence of symbols
taken in a given alphabgtthe intuitive meaning of quantity I(Y,P,n):;l(cpp(?)"),
of information I 5c(s) contained ins is the length of the
shortest binary message from which we can reconssuct where ¢(X)" is the string made of the first digits of the
(e.g., if we are working on a computer that binary message i§ymbo|ic trajectorybp(X). The information contenit can be
a progranp that outputss). This concept is expressed by the meagyred either via AIC or via CIC, so we have just defined
notion of algorithmic information conterAlC). We limit I e andl, (respectively.
ourselves to illustrating the intuitive definition of the concept Al?_et us éssume that tHe compression algorizhimoptimal
g::r:gésfor further details see Ref$29,10 and related ref- j, the sense of Ref10]. We have the following resultsee
By definition, the shortest program which outputs the Re-flik%g]r)ém 1If Z is an optimal coding, X, 2,T) is an er-
string s is a sort of optimal encoding & the information - 4ic dynamical system andis a measurable partition of

that is necessary to recon_struct_the string is contained in thg for u almost all trajectorie drawn from the dynamical
program. Unfortunately, this coding procedure cannot be per,

- ) . -~ P='Systems it holds

formed on a generic string by any algorithm: the algorithmic
information content is a quantity which is not computable by — _ — _
any algorithm(see Chaitin theorem in Rgf29]). 2% Pin) = ac(x,P.n) =nhy, (T, )+ o(n),

Another measure of the information content of a finite . .
string can also be defined by a loss-less data compressié%herer:“t(-rtf ) Is the Kotl)rlmgort(? t\_/@?]ntropy O T) vt
algorithm Z satisfying some suitable optimality properties res_lg_)r(]ec 0 ;GmeaSLtJLa de parti | ternX(T if th
which we shall not specify here. Details are discussed in Ref, | €0rem 2Given the dynamical systenX(T,u), if the

[10]. We can define the information content of the striras Mmeasureu on X is T invariant, then, ifZ is an optimal com-
the binary length of the compressed stritits), namely, pression algorithm, for any measurable partiti@rit holds

l2(s)=12(s)]. ® h(T,P)= [ lim sup—I 2% P.n) du
The advantage of using a compression algorithm lies in nore
the fact that, this way, the information contepfs) turns out |y (X, P,n)
to be a computable function. For this reason, we shall call it =] lim sup——dgu.
computable information content. X n— o

The notion of information is strongly related to chaos,
unpredictability and instability of the behavior of dynamical Let us set lim sup. .. |(Xx,”,n)/n be the complexity
systems. The KS entropy can be interpreted as the averadfdX,P) of the trajectoryx with respect to the partitiorP.
measure of information that is necessary to describe a step dheorem 2 shows that if a system has an invariant measure,
the evolution of a dynamical system. its entropy with respect to a given partition can be found by

We have seen that the information content of a string carveraging the complexity of its orbits over the invariant mea-
be defined either with probabilistic metho@sllowing the  sure. Then, the entropy may be alternatively defined as the
Shannon theopyor using the AIC or the CIC. Similarly, also average orbit complexity. However, if we fix a single point,
the KS entropy of a dynamical system can be defined irits orbit complexity is not yet well defined because it de-
different ways. The probabilistic method is the usual one, thgpends on the choice of a partition. We chose to get rid of this
AIC method has been introduced by Brudi89]; the CIC  dependence by considering only a particular class of parti-
method has been introduced in Rdf31,9]. So, in principle, tions and define the orbit complexity of a point as the supre-
it is possible to define the entropy of a single trajectory of amum of the orbit complexity over that class.
dynamical system. There are different ways to do tbise Let B; be a family of measurable partitions such that
Refs. [30,32,8,11,1. In this paper, we make use of a lim;_, diam(B;)=0. If we consider the quantity
method which can be implemented in numerical simulationslim sup_...Kz(X,8;), the following lemma holdgfor the
Now we shall describe it briefly. proof, see Ref{10]).

Through the usual procedure of symbolic dynamics, given Lemma 1If (X,u,T) is compact and ergodig, is optimal,
a discrete infinite trajectory={x;=T'(Xg)}i=o drawn from  then for x almost all pointsxye X, for the trajectoryx of
the dynamical systemX, u, T), we consider a finite partition starting pointx, it holds
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lim supKz(x,B8))=lim supKac(X,8))=h,(T). If we have a stretched exponential sensitivity(n)
i i—eo ~Ax(0)2", p<1 (e.g., in the Manneville family witte

) ) - >2), the information content of the orbits shall increase with
Therefore, this lemma, under suitable conditions on thgnhe power law:

dynamical system, on the partitions and on the compression
algorithm, permits to define almost everywhere toenplex-
ity of the orbit x of the starting point x, as
lim sup_,.. Kz(X,8;)=Iim sup_,. Kac(X,8i)- These
quantities asymptotically approach the KS entropy of the Since we have shown that the analysid ©f,P,n) gives
system. Indeed, the asymptotic behaviorl 6f,7,n) gives useful information on the underlying dynamics and since
an invariant of the dynamics which is finer than the KS en-I(x,P,n) can be defined through the CIC methodology, it
tropy and is particularly relevant when the KS entropy isturns out that it can be used to analyze experimental data
null. using a compression algorithm which is efficient enough and
It is well known that the KS entropy is related to the which is fast enough to analyze long strings of data. For the
instability of the orbits. The exact relations between the KSnumerical experiments, we have used a compression algo-
entropy and the instability of the system are given by therithm called CASToRe, illustrated in an earlier publication
Pesin theorem. We shall recall this theorem in the onef9]. The name of the algorithm is an acronym mearsoq-
dimensional case. Suppose that the average rate of separatipression algorithm, sensitive to regularitthe heuristic mo-

[(x,P,n)~nP. (8

of nearby starting orbits is exponential, namely, tivations for this name are explained in REEO]. Therefore,
in the following the algorithmZ shall be the algorithm
Ax(n)=Ax(0)2\" for Ax(0)<1, CASToRe.

where Ax(n) denotes the distance at tinmeof two points V. RESULTS
initially at distanceAx(0). Thenumber\ is called Lyapunov ' U

exponent; ifA>0 the system is unstable andcan be con- As a significant earlier work on real fluid dynamical pro-
sidered as a measure of its instabil(tyr initial data sensi- cesses, we have in mind the pioneering work of Solomon,
tivity). The Pesin theorem implies that, under some regularyweeks, and Swinnej83], who studied chaotic transport in a
ity assumptions) equals the KS entropy. laminar fluid flow in a rotating annulus by tracking large
In weakly chaotic systems, the amount of informationnumbers of tracer particles for long times. The remarkable
necessary to descrilvesteps of a trajectory is less than linear result of that paper is the discovery that the particle motion
in n and the rate of separation of nearby Starting orbits is |eS§an be eas”y described by means Of'a)Lwa”(_ In practice,
than exponential, then the KS entropy is not sensitive enougthese authors discovered strange kinetics. Our approach is
to distinguish the various examples of weakly chaotic dy-slightly different. We do not adopt the Lagrangian approach
namics since in every case the KS entropy is zero. Nevertheg chaotic transport of Ref33], but rather the Euler perspec-
less, using the ideas we illustrated above, the relation beive: we measure the velocity fluctuations in a suitable region
tween initial data sensitivity and information content of the of the flow.
orbits can be extended to these cases. In a jet flow, the shear layer between the so-called poten-
An example of such a generalization is given in R&R].  tjal core and the ambient fluid is subjected to an instability,
In the following, for the sake of brevity we only briefly which produces a roll-up of the shear layer into vortical
sketch the ideas underlying the results of R&2|, which are  structures; moving downstream, these structures grow and
very deep and detailed. Let us consider a dynamical systemormally undergo a process of pairing, through which two
([0,1],T) where the transition map satisfies some construc- subsequent structures merge to form a larger one. Depending
tivity properties(a constructive map is a map that can beon the geometrical and fluid dynamical conditions, multiple
defined using a finite amount of informatjoand the func-  pairings may occur before azimuthal instabilities lead to a
tion I (x,7,n) is defined using the AIC in a slightly different complete mixing of the flow at the end of the jet core. The
way than beforguse open coverings instead of partitibns instability leading to roll-up is characterized by a dominating
Provided the speed of separation of nearby starting orbitgequency, while the pairing process leads to a doubling of
goes likeAx(n)=Ax(0)f(x,n), it has been proved in Ref. the period of passage of the structures, and then to the ap-
[12] that under suitable assumptionsfomwe have for almost  pearance of its subharmonics. In the case of a coaxial jet

all the pointsxe[0,1] (Fig. 1), the situation is complicated by the presence of two
cores and shear layers, which give rise to different families
(X, P,n)~In[f(x,n)]. (6)  of vortices whose degree of interaction is a function of the

ratios D,/D; and U,/U;. In the present caseD(/D;
In the weakly chaotic case, the speed of separation o&2U,/U;=1.5), the stronger outer shear layer dominates
nearby starting orbits is less than exponential. In particular, ithe initial development of the flow and its dynamics is not far
we have power-law sensitivithx(n)=Ax(0)nP, the infor-  from that of a single jef25]. In order to describe the perfor-

mation content of the trajectory is mance of the different signal processing techniques in pro-
viding information on this dynamics, in the following we
[(X,P,n)~pIn(n). (7) shall analyze the axial velocity signal obtained from the
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FIG. 2. Fourier power spectrum of the axial velocityt posi- 18, Ua (Mid graph, solid ling and a purely periodic sign&bot-
tionsx/D.=1 andz/D. =0.96 tom graph, dotted line The scale is log linear.
| | . .

measurements in the positia’D;=1,y/D;=0.96, i.e., well  stantaneous frequencies of the two components derived from
inside the outer shear layer. their associated analytic signals. As already pointed out, to

As shown in Fig. 2, the Fourier spectrum of this signalavoid unphysical variations of this frequency due to the de-
has two peaks, one at the fundamental frequency near 19neracy of the phase definition, the data are filtered consid-
Hz (corresponding to a Strouhal number, basedlgrand on  ering only the time intervals in which the modulus of the
the outer shear layer momentum thickness at the jet outlehnalytic signal is above a given threshé¢&®% of the modu-
St=160/U,~0.0125) and a larger one at the subharmonicjus mean value in Fig.)3and are then statistically analyzed.
This indicates that at this position the pairing process is alBy this procedure, the mean values of the two frequencies
ready in an advanced stage, although not yet completed, ggere found to be 188.80 and 94.47 Hz, with standard devia-
may be derived from the analysis of the radial velocity spections of 4.8 and 0.93 Hz, respectively. This technique also
trum (not shown here for the sake of brevityn which the  allows us to obtain the time variation of the ratio between the
peak at the fundamental frequency is still the dominatingwo instantaneous frequencies, whose mean value was found
one. to be 2.002, with a standard deviation of 0.05, thus confirm-

The two components of the signal were extracted using ing thatu, is the subharmonic ofi,. As can be seen from
the wavelet filtering procedure described above and we regig. 3, the instantaneous frequencies vary in time with an
constructed the two signals, and uy,, associated with the jrregular trend, and the same may be shown to be true for the
harmonic (1, 190 H2 and to the subharmoniaif, 95 H2  modulus of the analytic signal, which corresponds to the am-
frequencies, respectively. The two reconstructed signgls plitude of the original velocity component fluctuation. This
and u, were then analyzed using the different techniqueseature is most probably due to the fact that the shape, size,
described in the previous sections, starting from the Hilbertadial position, and translation velocity of the vortical struc-
demodulation procedure. tures are not exactly constant in time. We are not able to find

Figure 3 shows a portion of the time variation of the in- an explicit form of the irregular time evolution of instanta-

neous frequencies. However, the nature of the frequency

I L L L fluctuations shall now be analyzed through the DE and CIC
methods to shed light on the degree of complexity of the two
fluid dynamical processes.

[ u, ]
200 - . . .
Z’\/“/\/"J\/\/\/\“’\"MN\N\\/\/\"\ WMMAN v First, we have studied the two reconstructed signgls

250 :

S (Hz) and u,, using the DE method. The results are illustrated in

ol ] Fig. 4 and, to make our di_scussion more transparent, are

K | compared to the result provided by the same method in the

1 case of a purely periodic signal. The results of Fig. 4 deserve
wl h some detailed comments. First of all, we note that the two
FTNYY T T N reconstructed signals yield a similar behavior, with an initial
[ ] transient followed by an oscillatory behavior with the DE
sol o v v 1y ] maxima lying on a horizontal line. This is a property shared
3 32 M 3 38 4 by the periodic signal. It is evident, however, that the simi-
larity with the periodic signal is not complete. Indeed, in the

FIG. 3. Instantaneous frequencies of the componepndu,  case of the periodic signal the regressions of the DE to the
as obtained using the wavelet-Hilbert procedure. initial condition are complete, while in the case of the two
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reconstructed signals they are not; in fact, the regression ir
tensities tend to decrease with time, suggesting that at inf
nite time the diffusion entropy might become rigorously con-
stant. This perfect localization is similar to the slow
occurrence of a collapse noticed years ago in the case of
problem of quantum chad84]. In that case, the dynamics §
under study was that of a 1/2 dipole precessing about a ma(s
netic field while undergoing the perturbation stemming fromg e ST ]
the harmonic motion of an oscillator. The entropy recursionsg

to the initial condition are complete if the Larmor frequency
is very small compared to oscillator frequency. In the case o
resonance, however, chaos emerges and, consequently,
complete regressions of decreasing intensity were recorde
All this suggests that the process under study is neithe

100 L

periodic nor quasiperiodic. In fact, in both cases the timet "
entropy regressions to the initial condition would be
complete[24,35. FIG. 5. The information content of the signal as a function of

In order to evaluate the degree of regularity of the twothe time lengtht, in a log-log representation. We show the results
reconstructed signals, we have estimated, by means of ti@rresponding to different partitions, all of them sharing the same
Rosenstein—Collins—De Luca algorithf86], the dominant Power-law exponent 0.83. From top to bottom: partitief,, Ps,,
Lyapunov exponent of the two time series, which turned oufPs. P2. The bottom solid line is the analytical prescription for the
to be zero for both sequencas andu, . Therefore, thanks POwer-law exponent 0.83.
to the Pesin theorem, we can say that the vortex dynamics in ] )
both cases of roll-up and pairing has null KS entropy. To-C€ss. We shall use this model to reproduce the _Fourler
gether with the fact that the processes are not ordered, wiPectrum, the DE and CIC properties of the experimental

may conclude that the vortex roll-up and pairing are weaklydataua anduy,. _ .
chaotic phenomena. Actually, it should be emphasized that our purpose is not

As a consequence, we classified the kind of complexity of0 buildup a simplified model that mimics the physics under-
the vortex dynamics by investigating the behavior of the in-lying the experimental data or even their exact time variation
formation content of the reconstructed signals. We translatetin terms of instantaneous frequengiesut just to propose a
the time series into symbolic sequences by considering thB10del that produces time series having the same kind of
interval J,=[min{ug,maxu,}] (similarly, we definedJ,)  complexity as the fluid dynamical data. _
and dividing it through several uniform partitiof , with k We shall give details only on the choices made to fulfill
subintervals wherek e {2,4,8,16,32,64,100 The different the conditions related,,. The _prescrlptlo_ns_ adopted to cre-
associated symbolic sequences have been compressed 3§ the model related to the signal are similar and, for the
means of the CASToRe algorithm. In all cases, the informaSake of simplicity, shall not be illustrated. First of all, we
tion contentl ,(n) as a function of the time stepshas been define the following normalized waiting time distribution:
explicitly calculated and was found to grow as a power law:
(u=1)TH 1

e

(10
I,(n)~Cyn“. 9

In the caseu>2, the first moment of this distribution is

The exponentr is 0.80 foru, and 0.83 fow, ; in both cases T/(u—2), thereby showing that the paramefekeeps the
it does not depend on the particular partition used. The conmean value of this time distribution under control. We also
stantC, depends on the partitio®, and increases with the define the set of frequency valuég={w,,...w,}, where
parameterk (see Fig. 5. As illustrated in Sec. IV, the fact the valuesw;’s are determined on the basis of the Hilbert
that the amount of information to describesteps of a tra- transform approach used to derive the results of Fig. 4. More
jectory is less than linear inis in complete agreement with precisely, these values can be considered to be a coarse-
the null KS entropy. graining representation of the condition illustrated in Fig. 3.

The discovery of the power-law growth of the information In the specific case of the signaj,, we have fixedf =10
content, for both the time serieg, andu,, concludes our and the frequencies;’s have been determined by a uniform
analysis on the experimental data. Now, we have to addregsartition of the frequency centered é24.47 H2 with a
the challenging task of building up a model reproducing thewidth that is twice the standard deviati¢®.93 H2.
main properties of the vortex dynamics found so far. This We now define the artificial signal as follows. We select a
model must explain the degree of complexity as it is indi-time 7, of the distribution of Eq.(10), we call this time
cated by the parameter ranging from 0.80 to 0.83, and at interval laminar phase and we randomly select one of the
the same time it has to be compatible with the crucial propfrequencies of the seA,, say w(7;). We assume that the
erty such as the peaked Fourier spectrum of Fig. 2. We prasignal, a sinusoidal function of time, keeps this frequency
pose a theoretical model driven by a hidden intermittent prothroughout the whole laminar region. At the end of this lami-
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nar region, we select another numberfrom the distribution 1
(1) and another frequency(7,) from the setA,, and so
on. At any random drawing of the pdir, (7))}, we must
also select a phasg, . This latter choice is not arbitrary, but
it is done in such a way as to ensure that the resulting sign:
is continuous. In conclusion, we get the following signal:

S(t)

o ()=siNw, (Dt+¢,(1)], (12)

where the subscript indicates the dependence of this arti-
ficial signal on the random distributiobt of Eq. (10), with a
fixed value ofu. This special way of sewing a laminar region
to the next has been dictated by the need of reproducing th : :
. . . . 1 10 100 1000

experimental spectrum of Fig. 2. Our numerical calculations t
allowed us to assess that a different choice, based on the ) ,
abrupt frequency jump, with a fixed phase, and, conse- FIG. 6._The entropy5(t) as a_fur)ctlon of time. Results _of the
quently, with an abrupt jump of the signai,(t), yields a DF tanaIySIS otm(;, (tc.’& g(;i}oh, s?"d :ln}aanc: t:;e S'mutlatled s'gnalf‘
continuous Fourier spectrum, thereby dramatically departin@ﬂ( ) tgenteri ett W_' _3' Sereﬂ 2":‘5”65_2 90 € control parameter.
from the behavior illustrated by Fig. 2. rom top fo hottomg =25, p=2.49, u= 190,

Actually, the inverse power-law distribution of waiting pends only on the frequency of the random events given by
times given by Eq(10) might have been produced by the the functionW(t) as shown in Ref[24], [16].
Manneville map. Indeed, we recall that the Manneville map As a first step, the model should reproduce the time evo-
f(x) =x+x*modl), withxe[0,1], is characterized by a Iution of the DE. As it is clearly illustrated in Fig. 6, the
parameterz>1, which controls the frequency of the jumps artificial sequences obtained from mod#1) with three dif-
from the random portion of the map to the laminar part of theferent values ofu (u=1.90,u=3.5,u=2.45) have the
map. Although the laminar portion of the map, which mustsame behavior 08(t) as the reconstructed signaj,. The
be very close to the origin, is not defined without some am-above choice of the values pfis motivated by the different
biguity [16], it is possible to derive a distribution with the properties of the probability of the random events. Indeed, if
same asymptotic properties as the distribution of &d) u>3 both the mean value and the varianceloare finite, if
using the following procedure. We call the return to the lami-2< <3 only the mean value is finite, whereas KL
nar region a “random event.” We may consider the waiting <2 both the mean value and the variance are infinite. There-
time between two consecutive random events as time of sdore, the DE is not sensitive to detect the exact valug.of
journ in a condition of order. The corresponding distribution  We note that, in spite of a lack of sensitivity to the com-
of waiting times is an inverse power law with indgx  plexity of the hidden driving process, Fig. 6 proves that there
=2/(z—1) [16]. The conditionz=2 is the border between is a good agreement between the DE of the reconstructed
the region where the waiting time distribution has a finitesignalu, and the DE of three simulated sequences generated
mean ¢<<2) and the region where this mean waiting time iswith different driving parameten. Therefore, Eq(11), with
infinite (z>2). This latter behavior has been namggb-  the random choice of waiting times prescribed by @d), is
radic dynamicg8]. Actually, the regioni<z<2 is charac- a plausible model of the process under study. At the moment
terized by a waiting time distributions with divergent secondwe do not have any analytical expression to relate the infor-
moment. For what concerns the KS entropy, it is positive inmation content index to the driving parametep of Eq.
the region Kz<2, while the entropy vanishes when the (11). Thus, it is impossible to determine theoretically the
parameterz enters the regioz=2. Hence, the Manneville inverse power-law distribution and, thus, the complexity of
map is weakly chaotic only when the parametdies in the  the driving process. We must rest on a numerical treatment,
regionz=2. based on applying the compression algorithm to artificial se-

Moreover, in both cases of time series drawn from a Man-quences with different values @f For this purpose, we have
neville map with driving parameter>2 and of time series turned the artificial time series generated by Etfl) into
generated by distributiol0) with u=2z/(z—1)<2, it has  several symbolic sequences by means of a uniform partition
been proved that the information content of the time serie$,. For all the values ofu adopted in the numerical simu-
grows as a power lawlz(n)~n®, where a=1/(z—1) lations, the resulting information content of associated sym-
=u—1<1. The proof is a rigorous theorem in the first casebolic series turned out to be E¢Q), with a<1, which is
[11,17] and an experimental evidence in the second casequivalent to the sporadic randomness of Gaspard and Wang
[24]. [8]. The dependence af on w is pictured in Fig. 7 and

Now, it comes as a natural consequence to determine, iturned out to be essentially monotonic. The numerical func-
the proposed modéll), the parameter that reproduces the tion a(u) crosses the horizontal strip 08@&<0.83 atu
kind of complexity of the reconstructed signals. Indeed,=2=0.1. Thus, the complexity of the driving stochastic pro-
working out that value of: corresponds to disclose the com- cess is measured, with a good approximation, by Ed)
plexity of the hidden driving process ,(t): the latter de-  with u=2.
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1 - - - - The first result is that the sewing process adopted to gen-
erate the artificial sequence yields a sort of time dilution of
095l R | randomness. The driving signal,(t) is characterized for
¢ pu>2 by a nonvanishing Lyapunov coefficient and, conse-
quently, by an information content growing linearly in time.
o9r A il The time increase of the information content becomes sub-
linear only in the regionu<2. We see from Fig. 7 that the
s 085| { information content of the signat,,(t) increases sublinearly
___________ e e o in time throughout the whole considered rangeuofalues

o and remains probably sublinear well beyoner 3, which is
08 ======= il i iniedaialn il il the border between My and ordinary Gaussian diffusion in
0-=0.80 the anomalous diffusion framework. According to the defini-
osl | tion of weak chaos adopted in this paper, we conclude that
. the signalo, is an expression of weak chaos regardless of
the degree of hidden complexity. At the moment we do not
' - ' ! have any theory expressingas a function ofu. However,
15 2 25 3 3.5 . . . . .

n the numerical results of Fig. 7 indicate thafu) is a mono-
tonic function of u with «<<1. The second result has to do
with the detection of the degree of complexity of the hidden
driving signalw ,(t). The uncertainty on the complexity of
the signalu is measured by the width of the strip between the

VI]. CONCLUDING REMARKS Straight lineae=0.80 and the Straight line=0.83. ThUS, the

uncertainty on the complexity of the hidden signal may be

The interest of this paper rests on the finding that the fluicsuggested by observing the crossing between the auig
dynamical process of the roll-up and pairing of vortices in aand the strip. We see from Fig. 2 that the crossing occurs in
jet flow can be characterized as a weakly chaotic phenoma sharp interval of: values aroung=2. More precisely, the
enon. Indeed, the experimental data show unambiguously @mplexity of the driving signal is measured by 4.8
vanishing KS entropy in spite of a nonregular evolution of <2 1. This leads us to conclude that the driving signal is
the frequencies. Moreover, a finer indicator of the degree ofuled by a distribution of random events that lies at the bor-
complexity of the time series as the computable informatiorder between nonstationary conditiop<2) and infinite
content shows a power-law grovvth of the information with variance condition (gM<3) There are other Comp|ex pro-
exponentx between 0.80 and 0.83. In order to shed light oncesses lying very close to this bordeee, for instance, the
the complexity of the fluid dynamical processes, we pro-solar flares of Ref[37] and the earthquakes in California
posed an artificial model where the hidden process is rulef3g]). It would be interesting to assess why the border be-
by a power-law distribution of random events. The maintween the stationary and the nonstationary states is the basin
properties(power spectrum, DE and CIC time evolutjoof  of attraction of some complex systems.
the experimental data are satisfactorily reproduced by the

artificial signal of Eq.(11), obtained according to the proce-

dure described in Sec. V. This important aspect is illustrated ACKNOWLEDGMENT

by Figs. 6 and 7. We devote these concluding remarks to

further comments on the latter figure and we stress that two P.G. gratefully acknowledges financial support from
main results emerge from its analysis. ARO, through Grant No. DAAD19-02-0037.

FIG. 7. The indexx denoting the complexity of the signal, (t)
of Eq. (11) as a function of the parametgt denoting the complex-
ity of the hidden driving process.
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