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Vortex dynamics in evolutive flows: A weakly chaotic phenomenon
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We make use of a wavelet method to extract, from experimental velocity signals obtained in an evolutive
flow, the dominating velocity components generated by vortex dynamics. We characterize the resulting time
series complexity by means of a joint use of data compression and of an entropy diffusion method. We assess
that the time series emerging from the wavelet analysis of the vortex dynamics is a weakly chaotic process with
a vanishing Kolmogorov-Sinai entropy and a power-law growth of the information content. To reproduce the
Fourier spectrum of the experimental signal, we adopt a harmonic dependence on time with a fluctuating
frequency, ruled by an inverse power-law distribution of random events. The complexity of these fluctuations
is determined by studying the corresponding artificial sequences. We reproduce satisfactorily both spectral and
complex properties of the experimental signal by locating the complexity of the fluctuating process at the
border between the stationary and the nonstationary states.
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I. INTRODUCTION

In the past few years an increasing interest has b
shown in studying physical processes with intermedi
properties between chaotic and regular dynamics. B
theory and experimental measurements have been affor
evidence for the existence of physical systems depar
from the chaotic condition established by a positi
Kolmogorov-Sinai~KS! entropy @1#. These systems, filling
the gap between randomness and order, are characteriz
vanishing KS entropy, and consequently, by a zero Lyapu
coefficient, but also by nonregular features. Indeed, a van
ing KS entropy does not necessarily imply a condition
order. Hereafter, we shall refer to these systems as we
chaotic.

Nevertheless, we have to point out that this is still a som
what vague definition, which applies to different physic
conditions ranging from low-dimensional maps, with regu
and random regions coexisting in the same phase space@2,3#,
to systems yielding self-organization@4,5#, which is a prop-
erty incompatible with the condition of total randomness. F
instance, in the case of low-dimensional systems, the co
tion of vanishing KS entropy applies to the classes of b
anomalous kinetics along filamented surfaces@6# and of in-
termittent Manneville-like maps@7,8#.

Therefore, since the class of physical systems with v
ishing KS entropy is huge, we need an even finer indicato
discriminate between different kinds of zero KS entropy d
namics. We choose the computable information cont
~CIC! ~also known as the computable quantity related to
Kolmogorov complexity! as the indicator of the degree o
complexity for weakly chaotic dynamical systems@9,10#.
CIC measures the information that is necessary to descrin
steps of a typical orbit. Indeed, if we consider two dynami
systems with vanishing KS entropy, such as the Mannev
1063-651X/2003/68~2!/026126~10!/$20.00 68 0261
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map in the regionz>2 and the logistic map at the Feigen
baum point, the information grows in a different way. In th
case of the Manneville map, described byxn115xn

1xn
z(mod 1), withxP@0,1#, the information content grows

as a power lawna @where the exponenta is 1/(z21)], as
shown in Refs.@8,11,12#, while in the case of the logistic
map at the chaos threshold, it grows as the logarithm on
~see Sec. IV and Refs.@13,10,14#!.

The aim of this paper is to study a fluid dynamical proce
in the outer shear layer of a coaxial jet flow: to be precise
study theroll-up and pairing of vortices from an entropic
point of view. We analyze experimental data from the
flow to characterize the degree of complexity of the flu
dynamical process. We shall apply a wavelet-Hilbert analy
@15# on the experimental velocity signals, in order to extra
and characterize only the fluctuations related to the two fl
dynamical processes~roll-up and pairing!. The subsequen
analysis of the reconstructed signals shows unambiguous
vanishing KS entropy. Furthermore, we prove that this c
dition of vanishing KS entropy is accompanied by a pow
law growth of the computable information content.

Moreover, we propose a model displaying the same k
of complexity of the experimental data by means of a s
chastic intermittent process ruled by an inverse power-
distribution of random eventsC(t);t2m. This is the same
waiting time distribution as that appearing in the Mannevi
map @8,16# and in the class of random walks introduced
Ref. @17#, which was proved to generate enhanced anom
lous diffusion. This form of anomalous diffusion, when
,m,3, was called Le´vy walk @18,19# and used later as th
prototype of the dynamical approach to Le´vy diffusion ~see,
for instance, Refs.@20,21#!. This type of dynamical processe
led the authors of Ref.@22# to coin the termstrange kinetics
to point out the anomalous nature of the diffusio
©2003 The American Physical Society26-1
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process emerging from the waiting time distribution with d
vergent second moment.

To achieve our goal, we use three distinct techniques.
first one is the aforementioned wavelet-Hilbert analysis@15#.
The second one is the diffusion entropy~DE! method@23,24#
and, finally, the third one is the CIC method of Refs.@9,10#.
This is the second example of a joint application of the D
and CIC methods. The first is given by the work of Ref.@24#,
where the reader can find a detailed discussion about
benefit stemming from the joint use of these two method

As for the experimental apparatus used to acquire the
to study the velocity signals are obtained in a coaxial jet fl
~see the scheme in Fig. 1!, described in more detail by Bur
esti et al. @25#. The analyzed configuration has an inner
outer jet diameter ratioDo /Di52.0 ~with Di550 mm), a
velocity ratioUo /Ui51.5 ~with Uo56 m/s), and wall thick-
nessL55 mm. The axial and radial velocity componentsu
andv, were measured by means ofX hot wires placed inside
the inner and the outer shear layers, at several axial posit
downstream the jet outlet. The measurements at each p
were carried out at least three times at a 5000 Hz samp
frequency for 20 s.

The outline of the paper is as follows. To make it
self-contained as possible, in Secs. II–IV, we make a sh
review of the wavelet-Hilbert analysis, of the DE and of t
CIC methods, respectively. In Sec. V, we illustrate the res
of these techniques applied to the vortex dynamics un
study in this paper. Finally, in Sec. VI, we discuss the res
that were obtained.

II. THE WAVELET-HILBERT ANALYSIS

The experimental velocity signals acquired in many flo
fields are characterized by fluctuations induced by the p
sage or by the oscillation of vortical structures. For instan
in the developing shear layers of a coaxial jet, the veloc
signals are of increasing complexity with increasing dista
from the jet outlet, and multiple dominating frequencies m
be present, corresponding to fluctuations with different
grees of modulation both in amplitude and in frequen
These fluctuations are connected with the passage and

FIG. 1. Illustration of the coaxial jet.
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namics of vortical structures produced by the instability
the shear layers. Therefore, signal analysis procedures b
only on conventional Fourier methods become largely in
propriate and different techniques, providing the time var
tion of the frequency and amplitude of the compone
present in the signals, should be used. A classical demod
tion technique, on which the analysis procedures used in
present investigation are founded, shall now be briefly
scribed. Any time-varying real signalx(t) may be repre-
sented in the form

x~ t !5A~ t !cos@w~ t !#.

This representation is not unique, but a so-called canon
pair may be defined for the quantities (A,w) if we introduce
the associated complex analytic signalZx(t) defined by

Zx~ t !5Ax~ t !eiwx~ t !5x~ t !1 ixH~ t !,

wherexH(t) is the Hilbert transform ofx(t), given by

xH~ t !5H@x~ t !#5
1

p
PE

2`

1` x~t!

t2t
dt.

The canonical representation ofx(t) is then

x~ t !5Ax~ t !cos@wx~ t !#,

hereby yielding the following definition of instantaneous fr
quency ofx(t):

nx~ t !5
1

2p

dwx~ t !

dt
. ~1!

This definition, which is perfectly correct from a mathema
cal point of view, acquires also a significant physical mea
ing when the analyzed signal is asymptotic, i.e., a sinuso
signal which is slowly modulated in amplitude and fr
quency,x(t)5A(t)cos@v(t)t1w0#. In this case, provided the
modulation frequencies are sufficiently lower than the fun
mental frequency of the signal, the time variation of amp
tude and frequency may be directly recovered from the ti
variation of the modulus and of the phase derivative of
associated analytic signal.

However, this procedure is applicable only if the signal
composed of a single asymptotic component; conversel
multiple components are present, other techniques mus
devised. One of these@26# is based on the application of th
continuous wavelet transform and exploits the strict analo
existing between the wavelet transform of a signal and
extraction of its associated analytic signal when the u
wavelet is a complex analytic function~i.e., whose Fourier
transform is zero for negative frequencies!. Indeed, the single
modulated components present in the signal may be
tracted~provided they are asymptotic and sufficiently sep
rated in frequency! from the restrictions of the wavelet trans
form to the curves where the wavelet modulus is maximu
which are called theridgesof the transform. More explicitly,
if the signal is of the form
6-2
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x~ t !5 (
n51

N

xn~ t !5 (
n51

N

An~ t !cos@wn~ t !#

5 (
n51

N

An~ t !cos@vn~ t !t1w0n#,

and a Morlet waveletc(t)5eiv0te2t2/2 is used, then the re
strictions of the wavelet transform to theN ridge curvesa
5arn(t) ~where the wavelet scalea is proportional to the
inverse of the frequency! may be expressed as

Wxn„arn~ t !,t…5Corr~ t !Zxn1r ~ t !,

where the termCorr(t) is completely defined by the use
wavelet and by the ridge values, and the residualr (t) is
negligible if the component is asymptotic. It is then possi
to approximately obtain the analytic signals associated w
the single components and to estimate the relevant frequ
and amplitude modulation laws. However, some limitatio
exist in the frequency modulation laws that may be detec
using this procedure@26#. In particular, we note that the sig
nals that do not fit satisfactorily, the asymptotic conditi
make the wavelet ridge analysis much less accurate than
usual Hilbert demodulation technique, see Ref.@15#. Conse-
quently, a new procedure was devised, which in a sense
ploits the qualities of both techniques and which shall n
be briefly described. The signal is first transformed usin
Morlet wavelet and the ridges are approximately deriv
from the modulus maxima curves; in this procedure, a h
value of the central frequency of the waveletv0 is used, in
order to assure a high frequency resolution and the reduc
of the interference effects between adjacent components.
wavelet maps are then filtered, neglecting the coefficie
outside a band around the dominating ridge, and an inv
transform is applied. The extracted signal may then be s
tracted from the original one and the procedure may be
peated until all the detectable components are extracted.
Hilbert transform technique is then applied to each com
nent, in order to obtain the required modulation laws. In
latter step, further filtering may be used, considering only
time intervals in which the modulus of the associated a
lytic signal is higher than a given threshold~in terms of a
given percent of its mean value!. This avoids spurious large
fluctuations of the instantaneous frequency and the final
tistical analysis may be restricted to those intervals of time
which this frequency is physically meaningful, in the sen
that it may be confidently associated with fluctuations p
duced by a fluid dynamical mechanism, such as the pas
or oscillation of vorticity structures. Obviously, in order
characterize their level of chaoticity, the single compone
obtained through the wavelet filtering procedure may also
analyzed with different techniques, as, for instance, th
described in the following sections.

III. DIFFUSION ENTROPY METHOD

This technique of analysis of time series was introduc
originally in the paper of Ref.@23#, whose authors coined, i
fact, the term diffusion entropy. It became clear immediat
02612
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afterwards@27# that the DE method is an efficient method
establishing the scaling value if the scaling condition appli
regardless of the scaling origin, and even when the sca
condition, according to the generalized central limit theor
~GCLT! @28#, yields a divergent variance. Given a discre
signal$xi% i 51,N , we interpret it as a set of diffusion genera
ing fluctuations. The collection of these fluctuations yield
single diffusion trajectory. We can create a set of many d
ferent diffusion trajectories by means of moving windows
size t with 1,t,N. We generateN2t11 trajectories con-
sidering the sum

yj~ t !5 (
i 5 j

i 5 j 1t

xi . ~2!

Each diffusive trajectory can be thought of as the final po
tion of a walker which jumped fort time steps. Letp(y,t) be
the probability to be at positiony after t time steps. If the
scaling condition applies to the asymptotic time limit,p(y,t)
is expected to fulfill the following condition:

p~y,t !5
1

td FS y

tdD . ~3!

Some of the processes of anomalous diffusion fit the pre
tion of the GCLT, thereby assigning to the functionF(y) the
structure of a Le´vy distribution with a diverging second mo
ment. This is a problem for the techniques of analysis ba
on the observation of the second moment. It is not a prob
for the DE, which evaluates the scaling parameterd from the
Shannon entropy of the probabilityp(y,t):

S~ t !52E
2`

1`

p~y,t !ln@p~y,t !#dz. ~4!

Indeed, it is straightforward to prove that when the scal
condition of Eq.~3! holds, Eq.~4! yields S(t)5A1d ln t,
whereA is the Shannon entropy of the generating functionF.
Thus, the scaling parameterd is easily evaluated by plotting
the Shannon entropy in a diagram with linear ordinate an
logarithmic abscissa. The Shannon entropy, as a functio
time, becomes a straight line whose slope is the scaling
rameterd.

It is important to point out that in the case where the tim
series under study is a periodic process, the diffusion
tropy, starting from a small initial value, reaches a maximu
then it regresses to the initial value, at a time correspond
to the period of the process under study@24#. Then, moving
from this value, the diffusion entropy increases again up t
maximum which has the same value as the earlier maxim
and so on. In the case of the logistic map at the chaos thr
old, the diffusion entropy exhibits a behavior very similar
that of a periodic process. The maxima still lie on a horizo
tal line, but the regressions to the minima are not complet
in the periodic case and occur in a disordered way@24#.

In the case of periodic processes, the initial entropy
crease is due to the fact that the moving window techniq
6-3
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adopted to create a large number of different diffusion t
jectories, is equivalent to setting uncertainty on the init
condition.

IV. COMPUTABLE INFORMATION CONTENT METHOD

The second method of analysis used in this paper aim
establishing a direct contact with algorithmic informatio
content~also known as Kolmogorov complexity!. In this sec-
ond method, the basic notion is the notion ofinformation.
Given a finite strings ~namely, a finite sequence of symbo
taken in a given alphabet!, the intuitive meaning of quantity
of information I AIC(s) contained ins is the length of the
shortest binary message from which we can reconstrus
~e.g., if we are working on a computer that binary messag
a programp that outputss!. This concept is expressed by th
notion of algorithmic information content~AIC!. We limit
ourselves to illustrating the intuitive definition of the conce
of AIC; for further details see Refs.@29,10# and related ref-
erences.

By definition, the shortest programp which outputs the
string s is a sort of optimal encoding ofs: the information
that is necessary to reconstruct the string is contained in
program. Unfortunately, this coding procedure cannot be p
formed on a generic string by any algorithm: the algorithm
information content is a quantity which is not computable
any algorithm~see Chaitin theorem in Ref.@29#!.

Another measure of the information content of a fin
string can also be defined by a loss-less data compres
algorithm Z satisfying some suitable optimality propertie
which we shall not specify here. Details are discussed in R
@10#. We can define the information content of the strings as
the binary length of the compressed stringZ(s), namely,

I Z~s!5uZ~s!u. ~5!

The advantage of using a compression algorithm lies
the fact that, this way, the information contentI Z(s) turns out
to be a computable function. For this reason, we shall ca
computable information content.

The notion of information is strongly related to chao
unpredictability and instability of the behavior of dynamic
systems. The KS entropy can be interpreted as the ave
measure of information that is necessary to describe a ste
the evolution of a dynamical system.

We have seen that the information content of a string
be defined either with probabilistic methods~following the
Shannon theory! or using the AIC or the CIC. Similarly, also
the KS entropy of a dynamical system can be defined
different ways. The probabilistic method is the usual one,
AIC method has been introduced by Brudno@30#; the CIC
method has been introduced in Refs.@31,9#. So, in principle,
it is possible to define the entropy of a single trajectory o
dynamical system. There are different ways to do this~see
Refs. @30,32,8,11,12#!. In this paper, we make use of
method which can be implemented in numerical simulatio
Now we shall describe it briefly.

Through the usual procedure of symbolic dynamics, giv
a discrete infinite trajectoryx̄5$xi5Ti(x0)% i>0 drawn from
the dynamical system (X,m,T), we consider a finite partition
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P5(R1 ,...,Rl) of the dynamical system. In a standard wa
we associate a stringfP( x̄) to the trajectoryx̄. We set
fP( x̄)5(s0 ,s1 ,...,sk ,...) if andonly if

; k>0 xkPRsk
, where skP$1,...,l %.

We can define theinformation content I( x̄,P,n) of the
trajectory x̄ with respect to the partitionP in the following
way:

I ~ x̄,P,n!ª Ĩ „fP~ x̄!n
…,

wherefP( x̄)n is the string made of the firstn digits of the
symbolic trajectoryfP( x̄). The information contentĨ can be
measured either via AIC or via CIC, so we have just defin
I AIC and I Z ~respectively!.

Let us assume that the compression algorithmZ is optimal
in the sense of Ref.@10#. We have the following results~see
Ref. @10#!.

Theorem 1. If Z is an optimal coding, (X,m,T) is an er-
godic dynamical system andP is a measurable partition ofX,
then form almost all trajectoriesx̄ drawn from the dynamica
systems it holds

I Z~ x̄,P,n!5I AIC~ x̄,P,n!5nhm~T,P!1o~n!,

wherehm(T,P) is the Kolmogorov entropy of (X,m,T) with
respect to the measurable partitionP.

Theorem 2. Given the dynamical system (X,T,m), if the
measurem on X is T invariant, then, ifZ is an optimal com-
pression algorithm, for any measurable partitionP it holds

hm~T,P!5E
X
lim sup

n→1`

I Z~ x̄,P,n!

n
dm

5E
X
lim sup

n→1`

I AIC~ x̄,P,n!

n
dm.

Let us set lim supn→1` I ( x̄,P,n)/n be the complexity
K( x̄,P) of the trajectoryx̄ with respect to the partitionP.
Theorem 2 shows that if a system has an invariant meas
its entropy with respect to a given partition can be found
averaging the complexity of its orbits over the invariant me
sure. Then, the entropy may be alternatively defined as
average orbit complexity. However, if we fix a single poin
its orbit complexity is not yet well defined because it d
pends on the choice of a partition. We chose to get rid of t
dependence by considering only a particular class of pa
tions and define the orbit complexity of a point as the sup
mum of the orbit complexity over that class.

Let b i be a family of measurable partitions such th
lim i→` diam(b i)50. If we consider the quantity
lim supi→`KZ( x̄,b i), the following lemma holds~for the
proof, see Ref.@10#!.

Lemma 1. If ~X,m,T! is compact and ergodic,Z is optimal,
then for m almost all pointsx0PX, for the trajectoryx̄ of
starting pointx0 it holds
6-4
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lim sup
i→`

KZ~ x̄,b i !5 lim sup
i→`

KAIC~ x̄,b i !5hm~T!.

Therefore, this lemma, under suitable conditions on
dynamical system, on the partitions and on the compres
algorithm, permits to define almost everywhere thecomplex-
ity of the orbit x̄ of the starting point x0 as
lim supi→` KZ( x̄,b i)5 lim supi→` KAIC( x̄,b i). These
quantities asymptotically approach the KS entropy of
system. Indeed, the asymptotic behavior ofI (x,P,n) gives
an invariant of the dynamics which is finer than the KS e
tropy and is particularly relevant when the KS entropy
null.

It is well known that the KS entropy is related to th
instability of the orbits. The exact relations between the
entropy and the instability of the system are given by
Pesin theorem. We shall recall this theorem in the o
dimensional case. Suppose that the average rate of sepa
of nearby starting orbits is exponential, namely,

Dx~n!.Dx~0!2ln for Dx~0!!1,

whereDx(n) denotes the distance at timen of two points
initially at distanceDx(0). Thenumberl is called Lyapunov
exponent; ifl.0 the system is unstable andl can be con-
sidered as a measure of its instability~or initial data sensi-
tivity !. The Pesin theorem implies that, under some regu
ity assumptions,l equals the KS entropy.

In weakly chaotic systems, the amount of informati
necessary to describen steps of a trajectory is less than line
in n and the rate of separation of nearby starting orbits is
than exponential, then the KS entropy is not sensitive eno
to distinguish the various examples of weakly chaotic d
namics since in every case the KS entropy is zero. Never
less, using the ideas we illustrated above, the relation
tween initial data sensitivity and information content of t
orbits can be extended to these cases.

An example of such a generalization is given in Ref.@12#.
In the following, for the sake of brevity we only briefl
sketch the ideas underlying the results of Ref.@12#, which are
very deep and detailed. Let us consider a dynamical sys
~@0,1#,T! where the transition mapT satisfies some construc
tivity properties ~a constructive map is a map that can
defined using a finite amount of information! and the func-
tion I ( x̄,P,n) is defined using the AIC in a slightly differen
way than before~use open coverings instead of partition!.
Provided the speed of separation of nearby starting or
goes likeDx(n).Dx(0) f (x,n), it has been proved in Ref
@12# that under suitable assumptions onf, we have for almost
all the pointsxP@0,1#

I ~x,P,n!; ln@ f ~x,n!#. ~6!

In the weakly chaotic case, the speed of separation
nearby starting orbits is less than exponential. In particula
we have power-law sensitivityDx(n).Dx(0)np, the infor-
mation content of the trajectory is

I ~x,P,n!;p ln~n!. ~7!
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If we have a stretched exponential sensitivityDx(n)
.Dx(0)2lnp

, p,1 ~e.g., in the Manneville family withz
.2), the information content of the orbits shall increase w
the power law:

I ~x,P,n!;np. ~8!

Since we have shown that the analysis ofI ( x̄,P,n) gives
useful information on the underlying dynamics and sin
I ( x̄,P,n) can be defined through the CIC methodology,
turns out that it can be used to analyze experimental d
using a compression algorithm which is efficient enough a
which is fast enough to analyze long strings of data. For
numerical experiments, we have used a compression a
rithm called CASToRe, illustrated in an earlier publicatio
@9#. The name of the algorithm is an acronym meaningcom-
pression algorithm, sensitive to regularity; the heuristic mo-
tivations for this name are explained in Ref.@10#. Therefore,
in the following the algorithmZ shall be the algorithm
CASToRe.

V. RESULTS

As a significant earlier work on real fluid dynamical pr
cesses, we have in mind the pioneering work of Solom
Weeks, and Swinney@33#, who studied chaotic transport in
laminar fluid flow in a rotating annulus by tracking larg
numbers of tracer particles for long times. The remarka
result of that paper is the discovery that the particle mot
can be easily described by means of a Le´vy walk. In practice,
these authors discovered strange kinetics. Our approac
slightly different. We do not adopt the Lagrangian approa
to chaotic transport of Ref.@33#, but rather the Euler perspec
tive: we measure the velocity fluctuations in a suitable reg
of the flow.

In a jet flow, the shear layer between the so-called pot
tial core and the ambient fluid is subjected to an instabil
which produces a roll-up of the shear layer into vortic
structures; moving downstream, these structures grow
normally undergo a process of pairing, through which tw
subsequent structures merge to form a larger one. Depen
on the geometrical and fluid dynamical conditions, multip
pairings may occur before azimuthal instabilities lead to
complete mixing of the flow at the end of the jet core. T
instability leading to roll-up is characterized by a dominati
frequency, while the pairing process leads to a doubling
the period of passage of the structures, and then to the
pearance of its subharmonics. In the case of a coaxia
~Fig. 1!, the situation is complicated by the presence of t
cores and shear layers, which give rise to different famil
of vortices whose degree of interaction is a function of t
ratios Do /Di and Uo /Ui . In the present case (Do /Di
52,Uo /Ui51.5), the stronger outer shear layer domina
the initial development of the flow and its dynamics is not
from that of a single jet@25#. In order to describe the perfor
mance of the different signal processing techniques in p
viding information on this dynamics, in the following w
shall analyze the axial velocity signalu obtained from the
6-5
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measurements in the positionz/Di51, y/Di50.96, i.e., well
inside the outer shear layer.

As shown in Fig. 2, the Fourier spectrum of this sign
has two peaks, one at the fundamental frequency near
Hz ~corresponding to a Strouhal number, based onUo and on
the outer shear layer momentum thickness at the jet ou
St5 f u/Uo;0.0125) and a larger one at the subharmon
This indicates that at this position the pairing process is
ready in an advanced stage, although not yet completed
may be derived from the analysis of the radial velocity sp
trum ~not shown here for the sake of brevity!, in which the
peak at the fundamental frequency is still the dominat
one.

The two components of theu signal were extracted usin
the wavelet filtering procedure described above and we
constructed the two signalsua and ub , associated with the
harmonic (ua , 190 Hz! and to the subharmonic (ub , 95 Hz!
frequencies, respectively. The two reconstructed signalsua
and ub were then analyzed using the different techniqu
described in the previous sections, starting from the Hilb
demodulation procedure.

Figure 3 shows a portion of the time variation of the i

FIG. 2. Fourier power spectrum of the axial velocityu at posi-
tions x/Di51 andz/Di50.96.

FIG. 3. Instantaneous frequencies of the componentsua andub

as obtained using the wavelet-Hilbert procedure.
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stantaneous frequencies of the two components derived f
their associated analytic signals. As already pointed out
avoid unphysical variations of this frequency due to the
generacy of the phase definition, the data are filtered con
ering only the time intervals in which the modulus of th
analytic signal is above a given threshold~50% of the modu-
lus mean value in Fig. 3! and are then statistically analyze
By this procedure, the mean values of the two frequenc
were found to be 188.80 and 94.47 Hz, with standard de
tions of 4.8 and 0.93 Hz, respectively. This technique a
allows us to obtain the time variation of the ratio between
two instantaneous frequencies, whose mean value was fo
to be 2.002, with a standard deviation of 0.05, thus confir
ing that ub is the subharmonic ofua . As can be seen from
Fig. 3, the instantaneous frequencies vary in time with
irregular trend, and the same may be shown to be true for
modulus of the analytic signal, which corresponds to the a
plitude of the original velocity component fluctuation. Th
feature is most probably due to the fact that the shape, s
radial position, and translation velocity of the vortical stru
tures are not exactly constant in time. We are not able to
an explicit form of the irregular time evolution of instanta
neous frequencies. However, the nature of the freque
fluctuations shall now be analyzed through the DE and C
methods to shed light on the degree of complexity of the t
fluid dynamical processes.

First, we have studied the two reconstructed signalsua
and ub using the DE method. The results are illustrated
Fig. 4 and, to make our discussion more transparent,
compared to the result provided by the same method in
case of a purely periodic signal. The results of Fig. 4 dese
some detailed comments. First of all, we note that the t
reconstructed signals yield a similar behavior, with an init
transient followed by an oscillatory behavior with the D
maxima lying on a horizontal line. This is a property shar
by the periodic signal. It is evident, however, that the sim
larity with the periodic signal is not complete. Indeed, in t
case of the periodic signal the regressions of the DE to
initial condition are complete, while in the case of the tw

FIG. 4. Results of the DE analysis onub ~top graph, dashed
line!, ua ~mid graph, solid line!, and a purely periodic signal~bot-
tom graph, dotted line!. The scale is log linear.
6-6
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VORTEX DYNAMICS IN EVOLUTIVE FLOWS: A . . . PHYSICAL REVIEW E68, 026126 ~2003!
reconstructed signals they are not; in fact, the regression
tensities tend to decrease with time, suggesting that at
nite time the diffusion entropy might become rigorously co
stant. This perfect localization is similar to the slo
occurrence of a collapse noticed years ago in the case
problem of quantum chaos@34#. In that case, the dynamic
under study was that of a 1/2 dipole precessing about a m
netic field while undergoing the perturbation stemming fro
the harmonic motion of an oscillator. The entropy recursio
to the initial condition are complete if the Larmor frequen
is very small compared to oscillator frequency. In the case
resonance, however, chaos emerges and, consequentl
complete regressions of decreasing intensity were recor
All this suggests that the process under study is nei
periodic nor quasiperiodic. In fact, in both cases t
entropy regressions to the initial condition would
complete@24,35#.

In order to evaluate the degree of regularity of the t
reconstructed signals, we have estimated, by means o
Rosenstein–Collins–De Luca algorithm@36#, the dominant
Lyapunov exponent of the two time series, which turned
to be zero for both sequencesua andub . Therefore, thanks
to the Pesin theorem, we can say that the vortex dynamic
both cases of roll-up and pairing has null KS entropy. T
gether with the fact that the processes are not ordered
may conclude that the vortex roll-up and pairing are wea
chaotic phenomena.

As a consequence, we classified the kind of complexity
the vortex dynamics by investigating the behavior of the
formation content of the reconstructed signals. We transla
the time series into symbolic sequences by considering
interval Ja5@min$ua%,max$ua%# ~similarly, we definedJb)
and dividing it through several uniform partitionsPk , with k
subintervals wherekP$2,4,8,16,32,64,100%. The different
associated symbolic sequences have been compresse
means of the CASToRe algorithm. In all cases, the inform
tion contentI z(n) as a function of the time stepsn has been
explicitly calculated and was found to grow as a power la

I Z~n!;Ckn
a. ~9!

The exponenta is 0.80 forua and 0.83 forub ; in both cases
it does not depend on the particular partition used. The c
stantCk depends on the partitionPk and increases with the
parameterk ~see Fig. 5!. As illustrated in Sec. IV, the fac
that the amount of information to describen steps of a tra-
jectory is less than linear inn is in complete agreement wit
the null KS entropy.

The discovery of the power-law growth of the informatio
content, for both the time seriesua and ub , concludes our
analysis on the experimental data. Now, we have to add
the challenging task of building up a model reproducing
main properties of the vortex dynamics found so far. T
model must explain the degree of complexity as it is in
cated by the parametera ranging from 0.80 to 0.83, and a
the same time it has to be compatible with the crucial pr
erty such as the peaked Fourier spectrum of Fig. 2. We
pose a theoretical model driven by a hidden intermittent p
02612
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cess. We shall use this model to reproduce the Fou
spectrum, the DE and CIC properties of the experimen
dataua andub .

Actually, it should be emphasized that our purpose is
to buildup a simplified model that mimics the physics und
lying the experimental data or even their exact time variat
~in terms of instantaneous frequencies!, but just to propose a
model that produces time series having the same kind
complexity as the fluid dynamical data.

We shall give details only on the choices made to ful
the conditions relatedub . The prescriptions adopted to cre
ate the model related to the signalua are similar and, for the
sake of simplicity, shall not be illustrated. First of all, w
define the following normalized waiting time distribution:

C~t!5
~m21!Tm21

~T1t!m . ~10!

In the casem.2, the first moment of this distribution is
T/(m22), thereby showing that the parameterT keeps the
mean value of this time distribution under control. We al
define the set of frequency valuesA,5$v1 ,...v,%, where
the valuesv j ’s are determined on the basis of the Hilbe
transform approach used to derive the results of Fig. 4. M
precisely, these values can be considered to be a coa
graining representation of the condition illustrated in Fig.
In the specific case of the signalub , we have fixed,510
and the frequenciesv j ’s have been determined by a unifor
partition of the frequency centered at~94.47 Hz! with a
width that is twice the standard deviation~0.93 Hz!.

We now define the artificial signal as follows. We selec
time t1 of the distribution of Eq.~10!, we call this time
interval laminar phase and we randomly select one of
frequencies of the setA, , say v(t1). We assume that the
signal, a sinusoidal function of time, keeps this frequen
throughout the whole laminar region. At the end of this lam

FIG. 5. The information content of the signalub as a function of
the time lengtht, in a log-log representation. We show the resu
corresponding to different partitions, all of them sharing the sa
power-law exponent 0.83. From top to bottom: partitionP100, P32,
P8 , P2 . The bottom solid line is the analytical prescription for th
power-law exponent 0.83.
6-7
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nar region, we select another numbert2 from the distribution
c~t! and another frequencyv(t2) from the setA, , and so
on. At any random drawing of the pair$t j ,v(t j )%, we must
also select a phasef j . This latter choice is not arbitrary, bu
it is done in such a way as to ensure that the resulting sig
is continuous. In conclusion, we get the following signal:

sm~ t !5sin@vm~ t !t1fm~ t !#, ~11!

where the subscriptm indicates the dependence of this ar
ficial signal on the random distributionC of Eq. ~10!, with a
fixed value ofm. This special way of sewing a laminar regio
to the next has been dictated by the need of reproducing
experimental spectrum of Fig. 2. Our numerical calculatio
allowed us to assess that a different choice, based on
abrupt frequency jump, with a fixed phase, and, con
quently, with an abrupt jump of the signalsm(t), yields a
continuous Fourier spectrum, thereby dramatically depar
from the behavior illustrated by Fig. 2.

Actually, the inverse power-law distribution of waitin
times given by Eq.~10! might have been produced by th
Manneville map. Indeed, we recall that the Manneville m
f (x)5x1xz(mod1), with xP@0,1#, is characterized by a
parameterz.1, which controls the frequency of the jump
from the random portion of the map to the laminar part of
map. Although the laminar portion of the map, which mu
be very close to the origin, is not defined without some a
biguity @16#, it is possible to derive a distribution with th
same asymptotic properties as the distribution of Eq.~10!
using the following procedure. We call the return to the lam
nar region a ‘‘random event.’’ We may consider the waiti
time between two consecutive random events as time of
journ in a condition of order. The corresponding distributi
of waiting times is an inverse power law with indexm
5z/(z21) @16#. The conditionz52 is the border between
the region where the waiting time distribution has a fin
mean (z,2) and the region where this mean waiting time
infinite (z.2). This latter behavior has been namedspo-
radic dynamics@8#. Actually, the region3

2 <z,2 is charac-
terized by a waiting time distributions with divergent seco
moment. For what concerns the KS entropy, it is positive
the region 1,z,2, while the entropy vanishes when th
parameterz enters the regionz>2. Hence, the Manneville
map is weakly chaotic only when the parameterz lies in the
regionz>2.

Moreover, in both cases of time series drawn from a M
neville map with driving parameterz.2 and of time series
generated by distribution~10! with m5z/(z21),2, it has
been proved that the information content of the time se
grows as a power lawI Z(n);na, where a51/(z21)
5m21,1. The proof is a rigorous theorem in the first ca
@11,12# and an experimental evidence in the second c
@24#.

Now, it comes as a natural consequence to determine
the proposed model~11!, the parameterm that reproduces the
kind of complexity of the reconstructed signals. Indee
working out that value ofm corresponds to disclose the com
plexity of the hidden driving processvm(t): the latter de-
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pends only on the frequency of the random events given
the functionC(t) as shown in Ref.@24#, @16#.

As a first step, the model should reproduce the time e
lution of the DE. As it is clearly illustrated in Fig. 6, th
artificial sequences obtained from model~11! with three dif-
ferent values ofm (m51.90,m53.5,m52.45) have the
same behavior ofS(t) as the reconstructed signalub . The
above choice of the values ofm is motivated by the different
properties of the probability of the random events. Indeed
m.3 both the mean value and the variance ofC are finite, if
2,m<3 only the mean value is finite, whereas if 1,m
<2 both the mean value and the variance are infinite. The
fore, the DE is not sensitive to detect the exact value ofm.

We note that, in spite of a lack of sensitivity to the com
plexity of the hidden driving process, Fig. 6 proves that th
is a good agreement between the DE of the reconstru
signalub and the DE of three simulated sequences gener
with different driving parameterm. Therefore, Eq.~11!, with
the random choice of waiting times prescribed by Eq.~10!, is
a plausible model of the process under study. At the mom
we do not have any analytical expression to relate the in
mation content indexa to the driving parameterm of Eq.
~11!. Thus, it is impossible to determine theoretically t
inverse power-law distribution and, thus, the complexity
the driving process. We must rest on a numerical treatm
based on applying the compression algorithm to artificial
quences with different values ofm. For this purpose, we hav
turned the artificial time series generated by Eq.~11! into
several symbolic sequences by means of a uniform parti
P2 . For all the values ofm adopted in the numerical simu
lations, the resulting information content of associated sy
bolic series turned out to be Eq.~9!, with a,1, which is
equivalent to the sporadic randomness of Gaspard and W
@8#. The dependence ofa on m is pictured in Fig. 7 and
turned out to be essentially monotonic. The numerical fu
tion a~m! crosses the horizontal strip 0.80<a<0.83 at m
5260.1. Thus, the complexity of the driving stochastic pr
cess is measured, with a good approximation, by Eq.~11!
with m52.

FIG. 6. The entropyS(t) as a function of time. Results of th
DE analysis onub ~top graph, solid line! and the simulated signal
sm(t) generated with different values of the control parame
From top to bottom:m53.5, m52.45,m51.90.
6-8
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VI. CONCLUDING REMARKS

The interest of this paper rests on the finding that the fl
dynamical process of the roll-up and pairing of vortices in
jet flow can be characterized as a weakly chaotic phen
enon. Indeed, the experimental data show unambiguous
vanishing KS entropy in spite of a nonregular evolution
the frequencies. Moreover, a finer indicator of the degree
complexity of the time series as the computable informat
content shows a power-law growth of the information w
exponenta between 0.80 and 0.83. In order to shed light
the complexity of the fluid dynamical processes, we p
posed an artificial model where the hidden process is ru
by a power-law distribution of random events. The ma
properties~power spectrum, DE and CIC time evolution! of
the experimental data are satisfactorily reproduced by
artificial signal of Eq.~11!, obtained according to the proce
dure described in Sec. V. This important aspect is illustra
by Figs. 6 and 7. We devote these concluding remarks
further comments on the latter figure and we stress that
main results emerge from its analysis.

FIG. 7. The indexa denoting the complexity of the signalsm(t)
of Eq. ~11! as a function of the parameterm, denoting the complex-
ity of the hidden driving process.
.
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The first result is that the sewing process adopted to g
erate the artificial sequence yields a sort of time dilution
randomness. The driving signalvm(t) is characterized for
m.2 by a nonvanishing Lyapunov coefficient and, cons
quently, by an information content growing linearly in tim
The time increase of the information content becomes s
linear only in the regionm,2. We see from Fig. 7 that the
information content of the signalsm(t) increases sublinearly
in time throughout the whole considered range ofm values
and remains probably sublinear well beyondm53, which is
the border between Le´vy and ordinary Gaussian diffusion i
the anomalous diffusion framework. According to the defi
tion of weak chaos adopted in this paper, we conclude
the signalsm is an expression of weak chaos regardless
the degree of hidden complexity. At the moment we do n
have any theory expressinga as a function ofm. However,
the numerical results of Fig. 7 indicate thata~m! is a mono-
tonic function ofm with a,1. The second result has to d
with the detection of the degree of complexity of the hidd
driving signalvm(t). The uncertainty on the complexity o
the signalu is measured by the width of the strip between t
straight linea50.80 and the straight linea50.83. Thus, the
uncertainty on the complexity of the hidden signal may
suggested by observing the crossing between the curvea~m!
and the strip. We see from Fig. 2 that the crossing occur
a sharp interval ofm values aroundm52. More precisely, the
complexity of the driving signal is measured by 1.9,m
,2.1. This leads us to conclude that the driving signal
ruled by a distribution of random events that lies at the b
der between nonstationary condition (m,2) and infinite
variance condition (2,m,3). There are other complex pro
cesses lying very close to this border~see, for instance, the
solar flares of Ref.@37# and the earthquakes in Californi
@38#!. It would be interesting to assess why the border
tween the stationary and the nonstationary states is the b
of attraction of some complex systems.
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